Showing Restraint, Signaling Resolve Coalitions, Cooperation, and Crisis Bargaining

Scott Wolford

Department of Government University of Texas at Austin

1 October 2013

Book Project

Question (general). How does military cooperation (coalitions) affect patterns of war and peace?

- Costly cooperation requires costly compensation
 - Side payments, spoils, bargaining strategies
- Choice of coalition partner affects
 - Threats, signaling, and war
 - Today (model forthcoming at AJPS, empirics new)
 - Conflict expansion
 - Forthcoming at ISQ (2014)
 - Peace (or not) among victors
 - Last chapter of ms

Book Project

Question (general). How does military cooperation (coalitions) affect patterns of war and peace?

- Costly cooperation requires costly compensation
 - Side payments, spoils, bargaining strategies
- Choice of coalition partner affects
 - Threats, signaling, and war
 - Today (model forthcoming at AJPS, empirics new)
 - Conflict expansion
 - Forthcoming at ISQ (2014)
 - Peace (or not) among victors
 - Last chapter of ms

Book Project

Question (general). How does military cooperation (coalitions) affect patterns of war and peace?

- Costly cooperation requires costly compensation
 - Side payments, spoils, bargaining strategies
- Choice of coalition partner affects
 - Threats, signaling, and war
 - Today (model forthcoming at AJPS, empirics new)
 - Conflict expansion
 - Forthcoming at ISQ (2014)
 - Peace (or not) among victors
 - Last chapter of ms

Research Question

Question (specific). How do coalition partners affect the probability of war?

(Possible) answer: Maybe they affect signaling.

- Skittish partners often blamed for "weak" signals...
 - ▶ Fearon 1997, Russett 1963, Lake 2011
 - Christensen 2011, Byman & Waxman 2002
- But not all "weak" threats are dangerous:
 - Kosovo 1999
 - Berlin 1961

Research Question

Question (specific). How do coalition partners affect the probability of war?

(Possible) answer: Maybe they affect signaling.

- Skittish partners often blamed for "weak" signals...
 - ▶ Fearon 1997, Russett 1963, Lake 2011
 - Christensen 2011, Byman & Waxman 2002
- But not all "weak" threats are dangerous:
 - Kosovo 1999
 - Berlin 1961

What are military coalitions?

- $\bullet \geq 2$ states that make a joint threat of war in a crisis
- Not necessarily (indeed rarely) formal allies
- Coding rules
 - ▶ ICB "triggering entity" + military involvement + prior to war
 - Subjective review can remove, not add

Coalitions and crisis escalation, 1946-2000

Escalates to war				
Coalition	No	Yes	Total	Pr(war)
No	268	48	316	pprox 0.15
Yes	34	22	56	pprox 0.39
Total	302	70	372	
$\chi^2_{(1)} = 18.0800, \ p = 0.000$				

TEXAS

Decomposition Analysis

Pr(War) = 1	Probit	Decomposition
$Coalition_1$	0.836 (0.222)***	
$CINC_1$	-1.109 (1.489)	-0.013 (0.033)
CINC ₂	-0.892 (1.529)	-0.007 (0.012)
Relative Capabilities	-0.121 (0.328)	0.001 (0.016)

Significance levels: *: 10%, **: 5%, and ***: 1%

What's missing?

Divergent preferences: "skittish" partners

- Costs of war fall differently across coalition members
 - Domestic politics
 - Geography
 - Valuation of stakes
- Divergent preferences over mobilization/escalation
 - Partner's willingness to cooperate
 - Costs leader pays to secure cooperation

A Theory of Coalitions and Crisis Bargaining

Threats (signals), bargaining, military cooperation

- Leader, (potential) Partner, Target
- T uncertain over L's resolve (valuation of stakes)
- Mobilization (high, low) affects military balance
 - Costly up front for L
 - Direct impact on P's costs for war
- Partner can refuse cooperation in event of war
 - (endogenous coalition formation)

Game Tree

Sets of Equilibria

Mobilization levels (high, low) may signal resolve

Three cases:

- Two players
 - No partner available
- Committed (i.e. non-skittish) partner
 - P cooperates for all mobilization levels
- Skittish partner
 - P cooperates iff low mobilization

Two Player & Committed Partner Equilibria

- Separating
 - Resolute L mobilizes high, irresolute low
 - Target does not risk war
- Semi-separating
 - Irresolute may bluff (high)
 - Target may risk war

Skittish Partner Equilibria

- Separating
 - Resolute L mobilizes high, irresolute low
 - Target does not risk war
- Semi-separating
 - Irresolute may bluff (high)
 - Target may risk war
- Pooling
 - Both types choose *low* mobilization
 - Target risks war

The Equilibrium Space

Equilibrium Summary

When P is skittish...

- Coalitions form around moderated threats
- When target is strong (bluffing expensive),
 - preserving cooperation is disincentive to bluff
 - partner's presence reduces probability of war
- When target is weak (bluffing cheap),
 - preserving cooperation is disincentive to separate
 - partner's presence increases probability of war

Empirical Implications

Probability of war by partner presence and target strength

(Simulation based on equilibrium constraints and mixing probabilities)

Assuming skittish partner in the coalition:

- H.1 In bilateral crises, the probability of war decreases slightly (if at all) in target military capabilities.
- H.2 In coalitional crises, the probability war decreases sharply in target military capabilities.

Empirical Model

- Sample: Directed crisis-side dyads (ICB), 1 v. 2
- DV: Escalation to war
- IVs: Coalition₁, CINC_T
- Controls: CINC₁, number₁, min distance₁, % allied₁, min polity₁, UNSC support₁, USA₁, Cold War
- Errors: SEs clustered by crisis

$$\begin{aligned} \mathsf{Pr}(\mathsf{War} = 1) = & \Phi(\alpha + \beta_1 \mathsf{Coalition}_1 + \beta_2 \mathsf{CINC}_{\mathcal{T}} + \\ & \beta_3 \left(\mathsf{Coalition}_1 \times \mathsf{CINC}_{\mathcal{T}}\right) + \beta \mathbf{X}_i + \varepsilon_i \right) \end{aligned}$$

Empirical Results

	Pr(War=1)	
Variable	Model 1 No Interaction	Model 2 With Interaction
$\begin{array}{l} \text{Coalition}_1 \\ \text{CINC}_{\mathcal{T}} \\ \text{Coalition}_1 \times \text{CINC}_{\mathcal{T}} \end{array}$	0.62 (0.32)* 57 (1.97) —	0.83 (0.33)** 0.40 (1.88) -19.03 (9.69)**
ا ((d.f.)	309 22.28 ^{**} ₍₁₀₎	309 26.96 ₍₁₁₎
ignificance levels: *	: 10%, ** : 5%,	, and $***:1\%$

Predicted Probabilities of War

Conclusion

The tradeoff: signaling resolve, showing restraint

- Coalitional politics affect the probability of war
 - ► Intra-coalitional politics × target characteristics
- Clarifies (abundant) conjectures about third parties
 - Neither always "bad"... nor always "good"
- Logic behind coalition formation
 - "Weak" threats can tie hands against risky bluffing

Questions?

Scott Wolford (UT Austin)

Restraint & Resolve

Rochester 21 / 28

Book Outline

- Introduction
- Why Coalitions?
 - Coalitions are unique phenomena, and I've got data!
- Coalition Formation
 - Prefer Ps w/similar prefs, less selective as Ps \uparrow powerful
- Ocalitions, Signaling, and War
 - ▶ Coalition partners \uparrow war w/weak targets, \downarrow w/strong targets
- Ocalitional Durability and Conflict Expansion
 - \blacktriangleright Diversity \downarrow balancing vs strong coalitions, \uparrow vs weak ones
- Onclusion
 - Diversity hastens breakdown of victorious coalitions

Payoffs: Coalitional War

$$EU_L(ext{coalitional war}) = - \ m_L + \left(rac{m_L + m_P}{m_L + m_P + m_T}
ight) extbf{v}_L - c_L$$

$$EU_P(ext{coalitional war}) = \left(rac{m_L+m_P}{m_L+m_P+m_T}
ight) v_P - c_P m_L$$

$$EU_T(ext{coalitional war}) = \left(rac{m_T}{m_L + m_P + m_T}
ight) extbf{v}_T - extsf{c}_T$$

Payoffs: Bilateral War

$$EU_L(ext{bilateral war}) = - m_L + \left(rac{m_L}{m_L + m_T}
ight) v_L - c_L$$

$$EU_P(ext{bilateral war}) = \left(rac{m_L}{m_L+m_T}
ight) v_P$$

$$EU_T(ext{bilateral war}) = \left(rac{m_T}{m_L + m_T}
ight) v_T - c_T$$

Defining skittishness

Cooperate if
$$m_L^* = \underline{m}_L$$
, or

$$\left(\frac{\underline{m}_L + m_P}{\underline{m}_L + m_P + m_T}\right) v_P - c_P \underline{m}_L \ge \left(\frac{\underline{m}_L}{\underline{m}_L + m_T}\right) v_P,$$

and defect if $m_L^* = \overline{m}_L$, or

$$\left(\frac{\overline{m}_L}{\overline{m}_L + m_T}\right) v_P > \left(\frac{\overline{m}_L + m_P}{\overline{m}_L + m_P + m_T}\right) v_P - c_P \overline{m}_L.$$

True when

$$c_P^l \leq c_P < c_P^h$$
.

TEXAS

Equilibrium probabilities of war

Where $v_L = \overline{v}_L$ w/prob ϕ , h is prob that \underline{v}_L bluffs, and r is prob that T risks war given $m_L^* = \overline{m}_L$,

- No coalition (or committed partner):
 - $Pr(war) = \phi hr$ when $m_T < \hat{m}_T$.
 - Pr(war) = 0 when $m_T \ge \hat{m}_T$.
- Coalition w/skittish partner:
 - $Pr(war) = \phi$ when $m_T < m_T^{\dagger}$.
 - $Pr(war) = \phi hr$ when $m_T^{\dagger} \leq m_T < \tilde{m}_T$.
 - Pr(war) = 0 when $m_T \ge \tilde{m}_T$.

Full Empirical Results

Pr(War = 1)					
Variable	Model 1 No Interaction	Model 2 With Interaction			
— Theoretical variables —					
Coalition ₁	0.62 (0.32)*	0.83 (0.33)**			
CINC _T	57 (1.97)	0.40 (1.88)			
$Coalition_1 \times CINC_T$	—	-19.03 (9.69)**			
— Control variables —					
CINC ₁	1.91 (1.98)	2.95 (2.05)			
Number1	0.18 (0.10)*	0.17 (0.11)			
Minimum Distance1	0.00 (0.00)	0.00 (0.00)			
Percent Allied1	-0.48 (0.62)	-0.57 (0.62)			
Low Democracy	-0.02 (0.02)	-0.02 (0.02)			
UNSC Support ₁	0.26 (0.34)	0.24 (0.33)			
United States1	-1.10 (0.54)**	-1.12 (0.52)**			
Cold War	0.43 (0.29)	0.43 (0.29)			
Intercept	-1.83 (0.30)***	-1.88 (0.31)***			
Model Statistics					
N	309	309			
Log-likelihood	-117.62	-115.87			
$\chi^{2}_{(d.f.)}$	$22.28^{**}_{(10)}$	$26.96^{***}_{(11)}$			

Table 4.1: Probit models of crisis escalation, 1946-2000

Significance levels: * : 10%, ** : 5%, and * * * : 1%

Scott Wolford (UT Austin)

Decomposition Analysis

Pr(War) = 1	Probit	Decomposition		
Coalition ₁	0.836 (0.222)***			
$CINC_1$	-1.109 (1.489)	-0.013 (0.033)		
CINC ₂	-0.892 (1.529)	-0.007 (0.012)		
Relative Capabilities	-0.121 (0.328)	0.001 (0.016)		
Number ₂	0.251 (0.115)**	-0.028 (0.016)		
Intercept	-1.247 (0.227)***	<u> </u>		
Pr(War No (0.153			
Pr(War Co	0.392			
Difference		-0.2399		
Total Explained		-0.0306		
Significance levels: $* \cdot 10\% ** \cdot 5\%$ and $** * 1\%$				

