# Showing Restraint, Signaling Resolve

Coalitions, Cooperation, and Coercive Diplomacy

Scott Wolford

Department of Government University of Texas at Austin

March 18, 2013



### Research Agenda

**Question (general).** How does military cooperation (coalitions) affect patterns of war and peace?

- Choice of coalition partner affects
  - Threats, signaling, and war
    - Today
  - Conflict expansion
    - Forthcoming at ISQ (2014)
  - ► Peace (or not) among victors
    - In process
- Two formation papers (solo & w/Emily Ritter)



#### Research Question

**Question (specific).** How do coalition partners affect signaling behavior in crisis bargaining?

- Skittish partners often blamed for "weak" signals
  - ► Fearon 1997, Russett 1963
  - ► Christensen 2011, Byman & Waxman 2002
- Maintaining military cooperation critical
  - ▶ Berlin 1961
  - ▶ Kosovo 1999



## **Defining Concepts**

#### What are military coalitions?

- $\bullet \geq 2$  states that make a joint threat of war
- Not necessarily (indeed rarely) formal allies
- Bargain over threats, demands, compensation
- Must cooperate in carrying out threats

Therefore...

Crisis behavior affected by need to ensure cooperation



#### Motivation

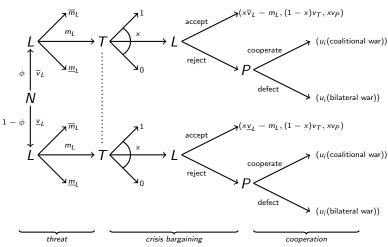
#### The problem of "skittish" partners

- Sensitivity to costs of war
  - Domestic politics, geography, resource constraints, . . .
- Divergent preferences over mobilization/escalation
- Affects incentives for cooperation

#### Questions:

- When accommodate? Act alone?
- Effects on signaling? Chances of war?




### Assumptions

Threats (signals), bargaining, military cooperation

- Leader, (potential) partner, target
- T uncertain over L's resolve (valuation of stakes)
- Mobilization affects military balance
  - Costly up front for L
  - Direct impact on P's costs for war
- Partner can refuse cooperation in event of war
  - ► (endogenous coalition formation)



#### Game Tree





## Sets of Equilibria

Mobilization levels (high, low) may signal resolve

#### Three cases:

- Two players
  - ► No partner available
- Committed (i.e. non-skittish) partner
  - ► P cooperates for all mobilization levels
- Skittish partner
  - ▶ P cooperates iff low mobilization



# Two Player & Committed Partner Equilibria

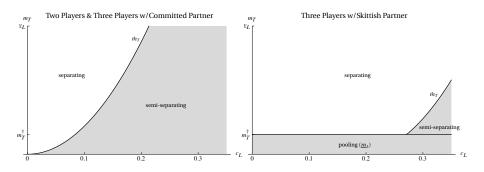
- Separating
  - ▶ Resolute L mobilizes high, irresolute low
  - ► Target does not risk war
- Semi-separating
  - Irresolute may bluff (high)
  - Target may risk war



## Skittish Partner Equilibria

- Separating
  - ▶ Resolute *L* mobilizes high, irresolute low
  - ► Target does not risk war
- Semi-separating
  - Irresolute may bluff (high)
  - Target may risk war
- Pooling
  - Both types choose low mobilization
  - ► Target risks war




### **Equilibrium Summary**

When P is skittish...

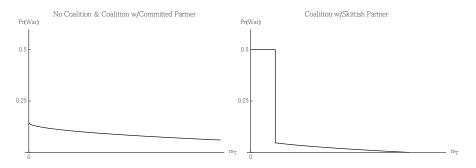
- Coalitions form around moderated threats
- When target is strong,
  - preserving cooperation is disincentive to bluff
  - partner's presence reduces probability of war
- When target is weak,
  - preserving cooperation is disincentive to separate
  - partner's presence increases probability of war



## The Equilibrium Space






### General Implications

- Partners can increase or decrease the probability of war
  - ► Raise Pr(War) vs. weak targets
  - ► Lower Pr(War) vs. strong targets
- Coalitions more war-prone against weaker targets
  - Stronger effect as partner becomes more powerful
- Acting unilaterally can signal of resolve
  - Used against powerful targets



## **Empirical Implications**

#### Probability of war by partner presence and target strength



(Simulation based on equilibrium constraints and mixing probabilities)



### Hypotheses

Assuming skittish partner in the coalition:

- H.1 When L acts unilaterally (bilateral crises), the probability of war decreases slightly (if at all) in target strength.
- H.2 When L acts with a partner (coalitional crises), the probability war decreases sharply in target strength.

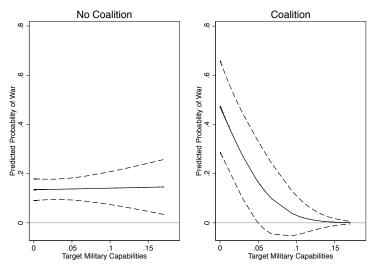


## **Empirical Model**

- Sample: Directed crisis-side dyads (ICB), 1 v. 2
- DV: Escalation to war
- IVs: Coalition<sub>1</sub>, CINC<sub>T</sub>
- Controls: CINC<sub>1</sub>, number<sub>1</sub>, min distance<sub>1</sub>, % allied<sub>1</sub>, min polity<sub>1</sub>,
   UNSC support<sub>1</sub>, USA<sub>1</sub>, Cold War
- Errors: SEs clustered by crisis (alt: FE by crisis)

$$Pr(War = 1) = \Phi(\alpha + \beta_1 Coalition_1 + \beta_2 CINC_T + \beta_3 (Coalition_1 \times CINC_T) + \beta \mathbf{X}_i + \varepsilon_i)$$




# **Empirical Results**

| Pr(War=1)                                                                                                        |                                |                                                 |  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------|--|
| Variable                                                                                                         | <b>Model 1</b> No Interaction  | Model 2 With Interaction                        |  |
| $\begin{aligned} & Coalition_1 \\ & CINC_{\mathcal{T}} \\ & Coalition_1 \times CINC_{\mathcal{T}} \end{aligned}$ | 0.62 (0.32)*<br>57 (1.97)      | 0.83 (0.33)**<br>0.40 (1.88)<br>-19.03 (9.69)** |  |
| $N \atop \chi^2_{(d.f.)}$                                                                                        | 309<br>22.28** <sub>(10)</sub> | 309<br>26.96***<br>26.96***                     |  |

Significance levels: \*: 10%, \*\*: 5%, and \*\*\*: 1%



#### Predicted Probabilities of War





#### Conclusion

The tradeoff: signaling resolve, showing restraint

- Coalitional politics affect the probability of war
  - ► Intra-coalitional politics × target characteristics
- Microfoundations for conjectures about third parties
  - ► Not always "bad"...nor always "good"
- Logic behind coalition formation
  - "Weak" threats can tie hands against risky bluffing



#### Conclusion

Questions?



# Payoffs: Coalitional War

$$EU_L$$
(coalitional war) =  $-m_L + \left(\frac{m_L + m_P}{m_L + m_P + m_T}\right)v_L - c_L$ 

$$EU_P$$
(coalitional war) =  $\left(\frac{m_L + m_P}{m_L + m_P + m_T}\right) v_P - c_P m_L$ 

$$EU_T$$
(coalitional war) =  $\left(\frac{m_T}{m_L + m_P + m_T}\right) v_T - c_T$ 



# Payoffs: Bilateral War

$$EU_L$$
(bilateral war) =  $-m_L + \left(\frac{m_L}{m_L + m_T}\right) v_L - c_L$ 

$$EU_P(\text{bilateral war}) = \left(\frac{m_L}{m_L + m_T}\right) v_P$$

$$EU_T ext{(bilateral war)} = \left(rac{m_T}{m_L + m_T}
ight)v_T - c_T$$



## Defining skittishness

Cooperate if  $m_L^* = \underline{m}_L$ , or

$$\left(\frac{\underline{m}_L + m_P}{\underline{m}_L + m_P + m_T}\right) v_P - c_P \underline{m}_L \ge \left(\frac{\underline{m}_L}{\underline{m}_L + m_T}\right) v_P,$$

and defect if  $m_L^* = \overline{m}_L$ , or

$$\left(\frac{\overline{m}_L}{\overline{m}_L + m_T}\right) v_P > \left(\frac{\overline{m}_L + m_P}{\overline{m}_L + m_P + m_T}\right) v_P - c_P \overline{m}_L.$$

True when

$$c_P^I \leq c_P < c_P^h$$
.



## Equilibrium probabilities of war

Where  $v_L = \overline{v}_L$  w/prob  $\phi$ , h is prob that  $\underline{v}_L$  bluffs, and r is prob that T risks war given  $m_L^* = \overline{m}_L$ ,

- No coalition (or committed partner):
  - $Pr(war) = \phi hr$  when  $m_T < \hat{m}_T$ .
  - Pr(war) = 0 when  $m_T \ge \hat{m}_T$ .
- Coalition w/skittish partner:
  - $Pr(war) = \phi$  when  $m_T < m_T^{\dagger}$ .
  - $Pr(war) = \phi hr$  when  $m_T^{\dagger} \leq m_T < \tilde{m}_T$ .
  - Pr(war) = 0 when  $m_T \ge \tilde{m}_T$ .



### Full Empirical Results

Table 4.1: Probit models of crisis escalation, 1946-2000

| Pr(War = 1)                   |                           |                          |
|-------------------------------|---------------------------|--------------------------|
| Variable                      | Model 1<br>No Interaction | Model 2 With Interaction |
| — Theoretical variables -     | _                         |                          |
| Coalition <sub>1</sub>        | 0.62 (0.32)*              | 0.83 (0.33)**            |
| $CINC_T$                      | 57 (1.97)                 | 0.40 (1.88)              |
| $Coalition_1 \times CINC_T$   | _                         | -19.03 (9.69)**          |
| — Control variables —         |                           |                          |
| CINC <sub>1</sub>             | 1.91 (1.98)               | 2.95 (2.05)              |
| Number <sub>1</sub>           | 0.18 (0.10)*              | 0.17 (0.11)              |
| Minimum Distance <sub>1</sub> | 0.00 (0.00)               | 0.00 (0.00)              |
| Percent Allied <sub>1</sub>   | -0.48 (0.62)              | -0.57 (0.62)             |
| Low Democracy                 | -0.02 (0.02)              | -0.02 (0.02)             |
| UNSC Support <sub>1</sub>     | 0.26 (0.34)               | 0.24 (0.33)              |
| United States <sub>1</sub>    | -1.10 (0.54)**            | -1.12 (0.52)**           |
| Cold War                      | 0.43 (0.29)               | 0.43 (0.29)              |
| Intercept                     | -1.83 (0.30)***           | -1.88 (0.31)***          |
| N                             | Model Statistics          |                          |
| N                             | 309                       | 309                      |
| Log-likelihood                | -117.62                   | -115.87                  |
| $\chi^2_{(d.f.)}$             | 22.28**                   | 26.96***                 |

Significance levels: \*: 10%, \*\*: 5%, and \* \* \*: 1%

